M1. (a) (because the) potential of the live wire is 230 V
(so there is a) large potential difference between live wire and electrician
charge / current passes through his body
allow voltage for potential difference
(b) diameter between 3.50 and 3.55 (mm)
allow correct use of value of cross-sectional area of 9.5 to $9.9\left(\mathrm{~mm}^{2}\right)$ with no final answer given for 1 mark
(c) $18000=\mathrm{I} \times 300$

$$
I=18000 / 300=60
$$

$13800=\left(60^{2}\right) \times R$
$R=13800 / 60^{2}$
$3.83(\Omega)$
allow $3.83(\Omega)$ with no working shown for 5 marks
answer may also be correctly calculated using $P=I V$ and V $=I R$ if 230 V is used.

M2. (a) electric current (rate of) flow of (electric) charge / electrons

$$
\text { accept } I=\frac{Q}{t}
$$

with Q and t correctly named
potential difference work done / energy transferred per coulomb of charge (that passes between two points in a circuit)

$$
\text { accept } \quad V=\frac{W}{Q}
$$

with W and Q correctly named
(b) metals contain free electrons (and ions) accept mobile for free
as temperature of filament increases ions vibrate faster / with a bigger amplitude accept atoms for ions accept ions/atoms gain energy accept vibrate more for vibrate faster do not accept start to vibrate
electrons collide more (frequently) with the ions
or
(drift) velocity of electrons decreases
do not accept start to collide
accept increasing the p.d. increases the temperature (1 mark)
and
(and) resistance increases with temperature (1 mark) if no other marks scored
(c) 7.8
allow 1 mark for obtaining value 1.3 from graph
or allow 1 mark for a correct calculation using an incorrect current in the range 1.2-1.6 inclusive

M3. (a) (i)
efficiency $=\frac{\text { useful energy out }(\times 100 \%)}{\text { total } \text { energy in }}$
1.6 (W)
allow 1 mark for correct substitution ie

$$
0.2 / \frac{20}{100}=\frac{\text { output }}{8}
$$

(ii)
efficiency $=\frac{\text { useful energy out }(\times 100 \%)}{\text { total energy in }}$
32 (\%) / 0.32
or
their (a)(i) $\div 5$ correctly calculated ignore any units
(b) (i) any two from:

- comparison over same period of time of relative numbers of bulbs required eg over 50000 hours 5 CFL's required to 1 LED accept an LED lasts 5 times longer
- link number of bulbs to cost eg 5 CFL's cheaper than 1 LED an answer in terms of over a period of 50000 hours CFLs cost $£ 15.50$ (to buy), LED costs $£ 29.85$ (to buy) so CFLs are cheaper scores both marks
an answer in terms of the cost per hour (of lifetime) being cheaper for CFL scores 1 mark if then correctly calculated scores both marks
- over the same period of time LEDs cost less to operate (than CFLs)
(ii) any one from:
- price of LED bulbs will drop do not accept they become cheaper
- less electricity needs to be generated accept we will use less electricity
- less CO_{2} produced
- fewer chips needed (for each LED bulb)
- fewer bulbs required (for same brightness / light)
- less energy wasted do not accept electricity for energy

M4. (a) water heated by radiation (from the Sun)
accept IR / energy for radiation
water used to heat buildings / provide hot water allow for 1 mark heat from the Sun heats water if no other marks given
references to photovoltaic cells / electricity scores $\mathbf{0}$ marks
(b) 2 (minutes)
$1.4 \times 10^{3}=\frac{168 \times 10^{3}}{t}$
gains 1 mark
calculation of time of 120 (seconds) scores 2 marks
(c) (i) $150(\mathrm{kWh})$
(ii) $£ 60(.00)$ or 6000 (p)
an answer of $£ 6000$ gains 1 mark
allow 1 mark for $150 \times 0.4(0) 150 \times 40$
allow ecf from (c)(i)
(iii) 25 (years)
an answer of 6000 / 240
or
$6000 /$ their (c)(ii) $\times 4$
gains 2 marks
an answer of $6000 / 60$
or
6000 / their (c)(ii) gains 1 mark, ignore any other multiplier of (c)(ii)
(iv) any one from:

- will get $£ 240$ per year accept value consistent with calculated value in (c)(iii)
- amount of light is constant throughout the year
- price per unit stays the same
- condition of cells does not deteriorate
(d) any one from:
- angle of tilt of cells
- cloud cover
- season / shade by trees
- amount of dirt

M5. (a) air near freezer compartment is cooled or loses energy accept air at the top is cold
cool air is (more) dense or particles close(r) together (than warmer air) do not allow the particles get smaller / condense
so (cooler) air falls
air (at bottom) is displaced / moves upwards / rises
do not allow heat rises
accept warm air (at the bottom) rises
(b) if volume is doubled, energy use is not doubled
or
volume \div energy not a constant ratio
correct reference to data, eg 500 is 2×250 but 630 not 2×300
(c) accept suitable examples, eg
advantage:

- reduces emissions into atmosphere
- lower input power or uses less energy or wastes less energy
- costs less to run
cost of buying or installing new fridge is insufficient ignore reference to size of fridge
disadvantage:
- land fill
- energy waste in production
- cost or difficulty of disposal
- transport costs

M6.
(a) (i) 5.88 (watts)
an answer of 5.9 scores 2 marks
allow 1 mark for correct substitution ie
$0.42=\frac{\text { power out }}{14}$
allow 1 mark for an answer of 0.0588 or 0.059
(ii) 8.12
allow 14 - their (a)(i) correctly calculated
(b) (i) input power / energy would be (much) less (reducing cost of running) accept the converse electricity is insufficient
(also) produce less waste energy / power accept 'heat' for waste energy
(as the waste energy / power) increases temperature of the cabinet
so cooler on for less time
(ii) line graph
need to get both parts correct accept scattergram or scatter graph
both variables are continuous
allow the data is continuous
(c) number of bulbs used-halogen=24 (LED=1)
total cost of LED $=£ 30+£ 67.20=£ 97.20$
accept a comparison of buying costs of halogen $£ 36$ and LED £30
total cost of halogen $=24 \times £ 1.50+24 \times £ 16.00=£ 420$
or
buying cost of halogen is $£ 36$ and operating cost is $£ 384$
accept a comparison of operating costs of halogen $£ 384$ and LED £67.20
allow for 3 marks the difference in total cost is $£ 322.80$ if the number 24 has not been credited
statement based on correct calculations that overall LED is cheaper must be both buying and operating costs
an alternative way of answering is in terms of cost per hour:
buying cost per hour for LED $\left(\frac{\left.£_{50.00}^{48000}\right)}{4}\right)=0.0625 \mathrm{p} / £ 0.000625$
buying cost per hour for halogen $=\left(\frac{£_{1.50}^{2000}}{20}\right)=0.075 p / £ 0.00075$ a calculation of both buying costs scores 1 mark
operating cost per hour for LED $=\left(\frac{£ 67.20}{48000}\right)=0.14 \mathrm{p} / £ 0.0014$
operating cost per hour for halogen $=\left(\frac{£ 16.00}{2000}\right)=0.8 p / £ 0.008$
a calculation of both operating costs scores 1 mark
all calculations show a correct unit all units correct scores 1 mark
statement based on correct calculations of both buying and operating costs, that overall LED is cheaper correct statement scores 1 mark

